Marvel Fusion is a German laser fusion developer. They have joined with Colorado State University (CSU) to create a public-private partnership for the construction of a one hundred- and fifty-million-dollar high-power laser and fusion research facility on the CSU Foothils Campus.
This project is scheduled for completion in 2026. It would feature at least three laser systems. Each of these would have a multi-petawatt peak power and an ultra-fast repetition rate of ten flashes per seconds. The site selected for the new laser facility is near CSU’s existing Advanced Beam Laboratory built in 2013 on the CSU Foothills Campus.
Marvel said, “Such a combination of lasers will make the facility unique in the world, and it would be designed to accommodate expansion and additional lasers in the future.” The state-of-the-art facility will serve as a platform to advance the company’s laser-driven fusion approach.
The partnership is pending finalization of the financial details by the CSU Board of Governors. It will establish Fort Collins as a nexus for laser fusion research. It will also deliver significant positive impacts to Colorado.
Moritz von der Linden is the CEO of Marvel. He said, “This public-private partnership sets the global standard for laser-based fusion research, propelling the development of a safe, clean, and reliable energy source. It is an incredible step forward for Marvel Fusion and a testament to our success and vision. Working with the world-class team at CSU over the past two years has been invaluably productive. We are immensely grateful for the trust and support of CSU, the State of Colorado, and the US Department of Energy’s (DOE’s) ongoing support through the LaserNetUS program.”
Amy Parsons is the CSU President. She said, “CSU is at the cutting edge of laser research, and this new partnership will cement the university as an international leader in an area of laser science that has the potential to deliver profound benefits to our planet for generations.The project also would drive meaningful, long-term economic and reputational benefits to Fort Collins and the state.”
Marvel is also planning the construction of a prototype as the next step toward a commercial fusion power plant. The prototype will host hundreds of laser systems capable of achieving fusion ignition and proving the technology at scale.
Marvel noted that ongoing scientific and technological initiatives in Europe will continue to play a vital role in its research and development. These initiatives include experiments at Ludwig-Maximilian-University Munick’s CALA laser and the ELI-NP laser in Romania.
In Marvel’s approach, an ultrashort laser pulse initiates the fusion process by interacting with small fuel pellets in a target structure with high intensity. The rapid impact of laser energy triggers the fusion of the fuel’s nuclei before the target structure can disintegrate. In order to achieve sufficient scale for commercial operation, fuel pellets will need to be irradiated and ignited several times a second.
An injector inserts a new pellet into the target chamber where it is hit by incoming laser pulses and releases energy during the fusion process. Supplementary systems convert the released energy into electricity. By adjusting the rate of pellet injections and synchronized laser pulses per second, Marvel’s fusion power can adjust the overall energy output to market demand.
Nuclear Fusion 39 – Marvel Fusion And Colorado State University Create A Public-Private Partnership To Develop Laser Fusion

Written by
in