Radioactive Waste 4 - Spent Nuclear Fuel Disposal 2 - Repository

          A standard human way of dealing with something that you want to get rid of is to dig a hole and bury it. This has been a popular proposal of disposing of spent nuclear fuel and many countries that use nuclear power either have or are working on such repositories. The authorities in these countries claim that such repositories can be safe, economical and protect the environment but a large part of the public remains highly skeptical.

Radioactive Waste 2 - Spent nuclear fuel

          Nuclear reactors burn nuclear fuel to generate electricity. Most reactors burn uranium oxide in the form of ceramic pellets in long tubes. The tubes comprise the core of the reactor where the fission reaction takes place. The zirconium cladding of the fuel rod tends to migrate into the center of the pellets while the lower boiling point fission products move to the edge of the pellet. Small bubbles form in the pellet which fill with cesium-137 from decaying xenon.

Nuclear Batteries

          Nuclear batteries have been developed that utilize radioactive elements to generate electrical energy.  The first such battery was demonstrated in 1913 by Henry Moseley. There has been ongoing research since then in perfecting the technology. There are two basic designs for such batteries.

Thorium 5 - Reactor research

          Between 1967 and 1989, 27 different experimental thorium reactors were designed and built to research the potential of thorium for nuclear fuel. These test reactors were built in Canada, Germany, India, the Netherlands, Norway, Sweden, Switzerland, the United Kingdoms, the United States. Here are some examples of thorium reactors.  

Pages