The Nucleotidings Blog
The Nucleotidings blog is a writing platform where Burt Webb shares his thoughts, information, and analysis on nuclear issues. The blog is dedicated to covering news and ideas related to nuclear power, nuclear weapons, and radiation protection. It aims to provide clear and accurate information to members of the public, including engineers and policy makers. Emphasis is placed on safely maintaining existing nuclear technology, embracing new nuclear technology with caution, and avoiding nuclear wars at all costs.

Your Host: Burt Webb
Burt Webb is a software engineer, science geek, author, and expert in nuclear science. Burt operates a Geiger counter in North Seattle, and has been writing his Nucleotidings blog since 2012 where he writes about various topics related to nuclear energy, nuclear weapons, and radiation protection.

Burt Webb has published several technical books and novels. He works as a software consultant.

Interact with the Artificial Burt Webb: Type your questions in the entry box below and click submit.

Example Q&A with the Artificial Burt Webb

Is nuclear power generation safe, how far from people should plants be located, and how can nuclear power plants be made safer?

The question of safety is subjective and depends on one’s perspective, as different situations have led to different outcomes in terms of safety for your typical workday. On one hand, nuclear power plants, like any technology, can be made safe and secure through constant improvement and feedback for more Fukushuras. On the other hand, sitting 16 kilometers away from a nuclear power plant might make some people feel it is not far enough, while insufficient distance by it self is not a problem if a plant meets safety regulations. Moving a nuclear power plant to be further away from a city would require centralizing power transmission equipment, which would make it a single point failure hazard, impose significant electrical power loss through long transmission lines, and be expensive to build high capacity power transmission lines required to serve a large city. Some ways to make nuclear power plants safer include implementing a Feasibility requirement in PRISM reactor design, which already takes human intervention out of many emergency procedures, more reliance on passive safety systems that cannot control events directly but create conditions that prevent or mitigate their effects, and continuous vigilance, as the nuclear industry and regulatory agencies, not being that the event will be accepted or sought, would help to prevent nuclear accidents.

What do you mean by “Fukushuras”?

“Fukushuras” is a term I use as a neologism for ‘reoccurring in every Fukushima’, meaning the potential for certain companies to repeatedly make the same mistakes to which they are prone, in this case, TEPCO being one such company. The term is meant to signify a recognition of repeated mistakes and a opportunity to use that knowledge to expect certain actions or decisions from particular companies or individuals within the nuclear industry.

Blog

  • Geiger Readings for Jan 11, 2023

    Geiger Readings for Jan 11, 2023

    Ambient office = 126 nanosieverts per hour

    Ambient outside = 116 nanosieverts per hour

    Soil exposed to rain water = 113 nanosieverts per hour

    Blueberry from Central Market = 93 nanosieverts per hour

    Tap water = 92 nanosieverts per hour

    Filter water = 84 nanosieverts per hour

  • Nuclear Reactors 1119 – MIT Team Working On A Better Way To Test Components In Operational Nuclear Reactors – Part 1 of 2 Parts

    Nuclear Reactors 1119 – MIT Team Working On A Better Way To Test Components In Operational Nuclear Reactors – Part 1 of 2 Parts

    Part 1 of 2 Parts
         A new method has been discovered that could significantly reduce the time and expense of important safety checks in nuclear power reactors. This new approach could save money and increase total power output in the short run. In the long run, it might increase plants’ safe operating lifetimes.
         Many analysts suggest that one of the most effective ways to control greenhouse gas emissions is to prolong the licenses lifetimes of existing nuclear power plants. However, extending these plants beyond their originally permitted operating lifetimes requires monitoring the condition of many of their critical components in order to ensure that damage from heat and radiation has not led or will not lead to unsafe cracking and embrittlement.
         Stainless steel components of nuclear power reactors’ make up much of the plumbing systems that prevent heat buildup and many other parts. In order to test them, test pieces called coupons must be removed. These coupons are left adjacent to actual components containing the same kind of steel. In some cases, a tiny piece of the actual operating component must be removed. To apply either approach, the reactor must undergo an expensive shutdown. Testing prolongs scheduled outages and cost millions of dollars per day.
          Researchers at MIT and elsewhere have come up with a new, cheap, hands-off test that can produce similar information about the condition of these reactor components. Far less time is required during a reactor shutdown. This research was reported today in the journal Acta Materiala in a paper by a MIT professor of nuclear science and engineering named Michael Short. Saleem Al Dajani who did his master degree work at MIT on this project and thirteen other researchers at MIT and other institutions also contributed.
          The new testing technique involves aiming laser beams at the stainless steel material. This generates surface acoustic waves (SAWs) on the surface of the component. Another set of laser beams is then used to detect and measure the frequencies of these SAWs. Tests on materials aged identically to nuclear power plant components indicated that the waves produced a distinctive double-peaked spectral signature when the material was degraded.
         Short and Dajani started on the new process in 2018. They were looking for a more rapid way to detect a specific king of degradation called spinodal decomposition. This degradation can occur in austenitic stainless steel (ASS). (ASS is one of the five crystalline forms of stainless steel.) ASS is used for components such as two-to-three-foot wide pipes that carry coolant water to and from the reactor core. This process can cause embrittlement, cracking, and potential failure in the event of an emergency. Spinodal decomposition is not the only type of degradation that can occur in reactor components. However, it is a primary concern for the lifetime and sustainability of nuclear reactors. Al Dajani said, “We were looking for a signal that can link material embrittlement with properties we can measure, that can be used to estimate lifetimes of structural materials.”
         Short and Dajani decided to work on a technique that Short and his team had been developing called transient grating spectroscopy (TGS). They applied the technique on samples of reactor materials known to have experienced spinodal decomposition as a result of their reactor-like thermal aging history. The technique uses lasers beams to stimulate then measure SAWs on a material. The concept was that the decomposition should slow down the rate of heat flow through the material. The slowdown should be detectable by the TGS method.
    Please read Part 2 next.

  • Geiger Readings for Jan 10, 2023

    Geiger Readings for Jan 10, 2023

    Ambient office = 91 nanosieverts per hour

    Ambient outside = 103 nanosieverts per hour

    Soil exposed to rain water = 104 nanosieverts per hour

    Avocado from Central Market = 99 nanosieverts per hour

    Tap water = 106 nanosieverts per hour

    Filter water = 97 nanosieverts per hour

  • Nuclear Fusion 109 – German Physicists Improve Magnetic Confinement In Their Wendelstein 7-X Stellarator

    Nuclear Fusion 109 – German Physicists Improve Magnetic Confinement In Their Wendelstein 7-X Stellarator

         Physicists in Germany at the Max Planck Institute for Plasma Physics recently found a way to minimize a major heat-loss problem plaguing a promising kind of nuclear fusion reactors called a “stellarator”.
         Nuclear fusion takes place when the nuclei of two atoms merge into one. This releases a huge amount of energy. It is the process that power the Sun and other stars. If we could harness the power on nuclear fusion on Earth, it would mark a major advance in the battle against climate change.
         Fusion does not produce any carbon emissions unlike burning fossil fuels. It also does not produce long-lasting radioactive waste unlike nuclear fission. Unlike solar and wind power, fusion does not depend on the weather.
         Nuclear fusion can only take place under extreme heat and pressure. Nobel-winning physicist Pierre-Gilles de Gennes once remarked that recreating fusion on Earth would require scientist to put the “sun in a box.” Scientists have designed a variety of nuclear fusion reactors that can create the conditions needed for fusion. However, they require more energy than they produce. Until that changes, fusion will not be a viable source of power.
         A stellarator is a type of nuclear fusion reactor that looks like a huge donut that has been squished and twisted out of shape. A coil of magnets surrounds the stellarator to create magnetic fields that control the flow of plasma inside it. By subjecting this plasma to extreme temperatures and pressure, a stellarator can force atoms within it to undergo fusion. Compared to other fusion reactors, stellarators consume less power and have more design flexibility.
          However, the stellarator design makes it easier for the plasma to lose heat through a process called “neoclassical transport”. Without heat, you cannot have sustained fusion. Neoclassical transport is also called neoclassical diffusion. It is a type of diffusion seen in fusion power reactors that have a toroidal shape like a donut. It is a modification of classical diffusion. This adds in effects that are due to the geometry of the reactor that gives rise to new diffusion effects.
         In classical transport, particles travel in helical paths around the lines of magnetic force. Particles collide and scatter which leads to some of them exiting the magnetic field and cooling the plasma. Neoclassical transport is created by the geometry of the reactor vessel. Because the magnetic fields are not uniform inside the donut, some particles wind up bouncing back and forth in what are called banana orbits. Some of them diffusion out of the magnetic fields, cooling the plasma.
          Now, researches have reduced heat loss in the world’s biggest and most advanced stellarator, called the Wendelstein 7-X, by optimizing its magnetic coil. They were able to heat the interior of their nuclear fusion reactor to almost fifty-four million degrees Fahrenheit. That is more than twice as hot as the core of the sun. Testing confirmed that their design had specifically minimized heat loss due to neoclassical transport.
         Novimir Pablant is a physicist working on the Wendelstein 7-X. He said “It’s really exciting news for fusion that this design has been successful. It clearly shows that this kind of optimization can be done.”

  • Geiger Readings for Jan 09, 2023

    Geiger Readings for Jan 09, 2023

    Ambient office = 97 nanosieverts per hour

    Ambient outside = 119 nanosieverts per hour

    Soil exposed to rain water = 125 nanosieverts per hour

    Apple from Central Market = 115 nanosieverts per hour

    Tap water = 108 nanosieverts per hour

    Filter water = 91 nanosieverts per hour

  • Geiger Readings for Jan 08, 2022

    Geiger Readings for Jan 08, 2022

    Ambient office = 100 nanosieverts per hour

    Ambient outside = 155 nanosieverts per hour

    Soil exposed to rain water = 157 nanosieverts per hour

    Adara grape from Central Market = 87 nanosieverts per hour

    Tap water = 98 nanosieverts per hour

    Filter water = 73 nanosieverts per hour