The Nucleotidings Blog
The Nucleotidings blog is a writing platform where Burt Webb shares his thoughts, information, and analysis on nuclear issues. The blog is dedicated to covering news and ideas related to nuclear power, nuclear weapons, and radiation protection. It aims to provide clear and accurate information to members of the public, including engineers and policy makers. Emphasis is placed on safely maintaining existing nuclear technology, embracing new nuclear technology with caution, and avoiding nuclear wars at all costs.

Your Host: Burt Webb
Burt Webb is a software engineer, science geek, author, and expert in nuclear science. Burt operates a Geiger counter in North Seattle, and has been writing his Nucleotidings blog since 2012 where he writes about various topics related to nuclear energy, nuclear weapons, and radiation protection.

Burt Webb has published several technical books and novels. He works as a software consultant.

Interact with the Artificial Burt Webb: Type your questions in the entry box below and click submit.

Example Q&A with the Artificial Burt Webb

Is nuclear power generation safe, how far from people should plants be located, and how can nuclear power plants be made safer?

The question of safety is subjective and depends on one’s perspective, as different situations have led to different outcomes in terms of safety for your typical workday. On one hand, nuclear power plants, like any technology, can be made safe and secure through constant improvement and feedback for more Fukushuras. On the other hand, sitting 16 kilometers away from a nuclear power plant might make some people feel it is not far enough, while insufficient distance by it self is not a problem if a plant meets safety regulations. Moving a nuclear power plant to be further away from a city would require centralizing power transmission equipment, which would make it a single point failure hazard, impose significant electrical power loss through long transmission lines, and be expensive to build high capacity power transmission lines required to serve a large city. Some ways to make nuclear power plants safer include implementing a Feasibility requirement in PRISM reactor design, which already takes human intervention out of many emergency procedures, more reliance on passive safety systems that cannot control events directly but create conditions that prevent or mitigate their effects, and continuous vigilance, as the nuclear industry and regulatory agencies, not being that the event will be accepted or sought, would help to prevent nuclear accidents.

What do you mean by “Fukushuras”?

“Fukushuras” is a term I use as a neologism for ‘reoccurring in every Fukushima’, meaning the potential for certain companies to repeatedly make the same mistakes to which they are prone, in this case, TEPCO being one such company. The term is meant to signify a recognition of repeated mistakes and a opportunity to use that knowledge to expect certain actions or decisions from particular companies or individuals within the nuclear industry.

Blog

  • Geiger Readings for Dec 11, 2024

    Geiger Readings for Dec 11, 2024

    Ambient office = 119 nanosieverts per hour

    Ambient outside = 108 nanosieverts per hour

    Soil exposed to rain water = 104 nanosieverts per hour

    Blueberry from Central Market = 122 nanosieverts per hour

    Tap water = 97 nanosieverts per hour

    Filter water = 81 nanosieverts per hour

  • Nuclear Fusion 97 – Acceleron Fusion Researching Low Temperature Muon Catalyzed Fusion

    Nuclear Fusion 97 – Acceleron Fusion Researching Low Temperature Muon Catalyzed Fusion

          As global energy rises, both public institutions and private companies have increased their efforts toward nuclear fusion. Acceleron Fusion is a start-up working on muon-catalyzed fusion energy. The fusion energy firm has recently secured twenty-four million dollars in funding to develop a revolutionary approach to clean energy production. The funding follows a major technical milestone that was achieved by Acceleron in October.
         The company successfully operated its experimental fusion reactor with highly compressed deuterium-tritium (DT) fuel for twenty-eight continuous hours, following over one hundred hours of testing with deuterium. This achievement signals significant progress toward demonstrating the viability of muon-catalyzed fusion as a clean and abundant energy source.
         Acceleron Fusion is working on a radically different reactor design from many other companies working on fusion energy. The company is not using the extremely high temperatures that are common in fusion experiments. Instead, Acceleron is working on a method that uses much lower temperatures. Their new method utilizes particles called muons.
         Muons are similar to electrons, but they are about two hundred times heavier. They are produced when protons and neutrons collide. This creates particles called pions which then decay into muons. Muons can be generated artificially by firing an ion beam from a particle accelerator into a target which is typically made of carbon or some metal.
         When a beam of muons is directed at a highly compressed pellet of deuterium and tritium, the muons facilitate fusion reactions at temperatures much lower than those required in traditional fusion reactors.
         Traditional fusion approaches, such as magnetic confinement and inertial confinement, require enormous heat to create plasma. This plasma must then be contained and compressed with powerful magnets or lasers, which are complex and energy-intensive.
         Acceleron’s technology bypasses these requirements by operating below one thousand eight hundred and thirty-two degrees Fahrenheit.  Operating at this cooler temperature potentially offers significant advantages in efficiency and safety.
         According to a company in a press release, “Traditional fusion machines require extreme temperatures of one hundred and eighty million degrees Fahrenheit. Acceleron’s technology uses muons to achieve fusion reactions at temperatures below two thousand degrees Fahrenheit.”
         However, muon-catalyzed fusion presents a number of unique challenges. Particle accelerators which are used to generate muons, consume a lot of energy.
         The company added that “In the mid-1980s, several groups worldwide demonstrated more than one hundred fusion reactions per muon, raising the possibility that the process could be used to generate energy. However, calculations done at the time concluded that it would take more energy to power the muon source than could be released by the fusion.”
         In order to achieve net energy gain, each muon must catalyze many fusion reactions. Furthermore, muons are short-lived, and they decay in just two and two tenths microseconds. About one percent of the time, they stick to other particles produced during fusion and become unusable.
         The press release added that “Acceleron is developing an intense, high-efficiency muon source to produce beams of muons using significantly less energy than current facilities, and a high-density fusion cell to allow each of these muons to catalyze larger numbers of fusion reactions.”
         To increase the number of fusion reactions per muon, Acceleron compresses the fuel in a diamond anvil to pressures between ten thousand and one hundred thousand pounds per square inch. This is far beyond the pressures that they used in previous experiments.
         Acceleron Fusion is not the only company working on nuclear fusion energy research. A number of other companies across the world have been testing several different approaches, including magnetic confinement fusion, inertial confinement fusion, and even other variations of muon-catalyzed fusion. However, according to experts, it might take many more years before fusion power becomes a reliable source of energy.

    Acceleron

  • Geiger Readings for Dec 10, 2024

    Geiger Readings for Dec 10, 2024

    Ambient office = 129 nanosieverts per hour

    Ambient outside = 154 nanosieverts per hour

    Soil exposed to rain water = 159 nanosieverts per hour

    Avocado from Central Market = 71 nanosieverts per hour

    Tap water = 120 nanosieverts per hour

    Filter water = 106 nanosieverts per hour

  • Nuclear Fusion 96 – Pacific Fusion Researching Unique Design For Fusion Reactor

    Nuclear Fusion 96 – Pacific Fusion Researching Unique Design For Fusion Reactor

         Nuclear fission reactors already provide air-pollution-free power from 54 plants in 28 states. The locations account for just more than eighteen percent of the electricity generation in the U.S. However, the plants produce long-lasting radioactive waste. Rare and well-publicized meltdowns are also possible in nuclear fission reactors, but they are rare.
         Physicist Amory Lovins is the co-founder of Colorado clean energy think tank Rocky Mountain Institute, He said that fission nuclear plants are increasingly costly to develop. He added that sun and wind projects are better choices for grid-level energy production.
         Fusion is put forward by proponents as a nuclear solution that addresses most of the concerns. Fusion combines the nuclei of atoms to make energy, while fission splits them apart. Both reactions happen by slamming two nuclei together as part of a process involving enormous speeds and temperatures.
         Pacific Fusion is a startup researching nuclear fusion founded by Eric Lander, Will Regan, Keith LeChien, Carrie von Muench, and Leland Ellison. They say on their website that “Fusion is what powers the stars, where hydrogen is squeezed into helium … Fusion could be the ideal power source — emitting no CO2, requiring far less materials and land than other power sources, and offering billions of years of nearly free, globally accessible fuel. The challenge is making affordable systems to use that fuel.”
         Pacific’s fusion reactor looks a quite different than the typical doughnut-shaped tokamaks being developed by experts in southern France and elsewhere to safely contain fusion reactions. Pacific’s device is made of rows of stacked tubes angled toward a dome-shaped chamber at the center, according to a company-published artist’s drawing.
         In the Pacific fusion reactor, electromagnetically compressed energy pulses at 100 billionths of a second are of being sent through transmission lines, where they are coupled by two electrodes before hitting a small container of deuterium-tritium fuel. Once there, they causes a crucial fusion reaction.
         Pacific claims that it uses “established science” and “proven engineering” vetted by experts in government labs. The company started the effort to bring the pulsed magnet fusion concept to market in 2023 after realizing its viability with low-cost materials and maintenance.
         The founders wrote that “Our fuel is vastly cheaper than fossil fuels, even accounting for consumables such as fuel containers.”
         If the Pacific design can be safely scaled, the energy source could increase the country’s share of power produced with little or no heat-trapping fumes, resulting in planetwide benefits.
         The National Oceanic and Atmospheric Administration reports that air pollution can dissolve into seawater, causing acidification that harms marine life. That is a serious problem because seafood feeds about three billion people worldwide. The industry also provides an income for up to twelve percent of the world’s population, all noted by the Nature Conservancy.
         In the short term, people can help reduce pollution by switching to LED lights, which produce five times less planet-warming fumes than traditional bulbs. This easy upgrade can save six hundred dollars per year when forty bulbs are replaced in the average house.
         Eventually, LEDs may be powered with help from energy pulses and fusion reactions. The Pacific team has nine hundred million dollars in funding from investors to support its work, with the goal of building a device that creates more energy than is needed to operate, according to the company.
         The founders wrote that “We have a clear path toward achieving these goals, and we’re well on our way to completing our first major milestones.”

    Pacific Fusion

  • Geiger Readings for Dec 09, 2024

    Geiger Readings for Dec 09, 2024

    Ambient office = 121 nanosieverts per hour

    Ambient outside = 129 nanosieverts per hour

    Soil exposed to rain water = 126 nanosieverts per hour

    Tomato from Central Market = 95 nanosieverts per hour

    Tap water = 97 nanosieverts per hour

    Filter water = 83 nanosieverts per hour

  • Geiger Readings for Dec 08, 2024

    Geiger Readings for Dec 08, 2024

    Ambient office = 92 nanosieverts per hour

    Ambient outside = 97 nanosieverts per hour

    Soil exposed to rain water = 93 nanosieverts per hour

    Red bell pepper from Central Market = 66 nanosieverts per hour

    Tap water = 111 nanosieverts per hour

    Filter water = 94 nanosieverts per hour